Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Energy Recovery Processes from Wastes

Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9789813292284
Veröffentl:
2019
Seiten:
250
Autor:
Sadhan Kumar Ghosh
eBook Typ:
PDF
eBook Format:
EPUB
Kopierschutz:
1 - PDF Watermark
Sprache:
Englisch
Beschreibung:

The book focuses on a global issue-municipal solid waste management (MSWM) and presents the most effective solutions based on energy recovery processes. There is huge potential in employing different technologies and modern management methodology for recovering energy from various waste streams to establish a sustainable and circular economy. In several countries, energy recovery from municipal solid wastes (MSW) is seen as a way of reducing the negative impact of waste on the environment and also reducing the burden on land resources. The book primarily focuses on highlighting the latest insights into energy recovery from various waste streams in different countries, with a particular emphasis on India. Further, it paves the way for sustainability in the energy sector as a whole by addressing waste management issues and simultaneous energy recovery. The chapters present high-quality research papers selected and presented in the conference, IconSWM 2018.
Chapter 1. 3-Stage Reactor Design to Convert MSW to Methanol.- Chapter 2. PCDD/PCDFs: A Burden From Hospital Waste Disposal Plant; Plasma Arc Gasification Is the Ultimate Solution for Its Mitigation.- Chapter 3. Catalytic and Non Catalytic Thermolysis of Waste Polystyrene for Recovery of Fuel Grade Products and their Characterization.- Chapter 4. Energy Recovery from Tyre Waste Pyrolysis: Product Yield Analysis and Characterization.- Chapter 5. Solid State Gas Fermenter to Convert Syn-Gas to Methanen.- Chapter 6. Conceptual approach of a Solar Thermal Steam Generator and its Design & Optimization.- Chapter 7. Generation of Energy from Waste Management.- Chapter 8. Influence of Pyrogallol (PY) Antioxidant in the Fuel Stability of Alexandrian Laurel Biodiesel.- Chapter 9. Investigation on Engine Characteristics Powered with Waste HDPE Oil Obtained from Catalytic Pyrolysis and Study on NOx Emission Variation using Thermal Imager.- Chapter 10. Application of Artificial Intelligence to Predict the Engine Performance and Emission Paradigm Fuelled with Diesel-Biodiesel Blends.- Chapter 11. Comparative Analysis of Experimental and Simulated Performance and Emissions of Compression Ignition Engine Using Biodiesel Blends.- Chapter 12. Modelling and Simulation of Biodiesel from Various Feed Stocks into Compression Ignition Engine.- Chapter 13. Sesame Stalk as a Feedstock for Thermo-chemical Conversion: Products Distribution and Characterization.- Chapter 14. Temperature Influence on Quality and Yield of Pyrolytic Products of Seedcake of KayeaAssamica.- Chapter 15. Recycling Industrial Waste for Production of Bioethanol.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga