Beschreibung:
What is the scientific problem we are trying to understand?
How do we model that with PDE?
What techniques can we use to analyze the PDE?
How do those techniques apply to this equation?
What information or insight did we obtain by developing and analyzing the PDE?
Perfect book for a ?One-semester PDE course
1. Introduction.- 2. Preliminaries.- 3. Conservation Equations and Characteristics.- 4. The Wave Equation.- 5. Separation of Variables.- 6. The Heat Equation.- 7. Function Spaces.- 8. Fourier Series.- 9. Maximum Principles.- 10. Weak Solutions.- 11. Variational Methods.- 12. Distributions.- 13. The Fourier Transform.- A. Appendix: Analysis Foundations.- References.- Notation Guide.- Index.