The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators

253, Operator Theory: Advances and Applications
Originaltitel:The Method of Rigged Spaces in Singular Perturbation Theory of Self-adjoint Operators
Sofort lieferbar  |
 Lieferzeit: 3-5 Tage  
Unser bisheriger Preis: 117,69 €
Jetzt 109,99 €

Alle Preise inkl. MwSt.
| zzgl. Versand
Provides an adequate tool for exploration of the singular perturbation problem
Preface.- Introduction.- 1.Preliminaries.- 2.Symmetric Operators and Closable Quadratic Forms.- 3.Self-adjoint Extensions of Symmetric Operators.- 4.Rigged Hilbert Spaces.- 5.Singular Quadratic Forms.- 6.Dense Subspaces in Scales of Hilbert Spaces.- 7.Singular Perturbations of Self-adjoint Operators.- 8.Super-singular Perturbations.- 9.Some Aspects of the Spectral Theory.- References.- Subject Index.- Notation Index.
This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac d-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadratic forms, and the theory of rigged Hilbert spaces.
The book will appeal to researchers in mathematics and mathematical physics studying the scales of densely embedded Hilbert spaces, the singular perturbations phenomenon, and singular interaction problems.
Autor: Volodymyr Koshmanenko, Mykola Dudkin
ワbersetzung von: Nataliia Koshmanenko

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.



Autor: Volodymyr Koshmanenko
ISBN-13 :: 9783319295336
ISBN: 3319295330
Erscheinungsjahr: 09.08.2016
Verlag: Springer-Verlag GmbH
Gewicht: 542g
Seiten: 236
Sprache: Englisch
Sonstiges: Buch, 241x159x22 mm, Bibliographie
Google Plus
Powered by Inooga