Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Discontinuous Groups of Isometries in the Hyperbolic Plane

Sofort lieferbar | Lieferzeit: Sofort lieferbar I
Werner Fenchel
29, De Gruyter Studies in Mathematics
eBook Typ:
eBook Format:
0 - No protection

This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups).
Editor's preface - Short biography of the authors - Mobius transformations and non-euclidean geometry - Pencils of circles - Inversive geometry - Cross-ratio - Mobius tranformations, direct and reversed - Invariant points and classification of Mobius transformations - Complex distance of two pairs of points - Non-Euclidian metric - Geometric transformations - Non-Euclidean trigonometry - Products and commutators of motions - Discontinuous groups of motions and reversions - The concept of discontinuity - Groups with invariant points or lines - A discontinuity theorem - F-groups. Fundamental set and limit set - The Convex domain of F-group. Characteristic and isometric neighbourhood - Quasi-compactness modulo F and finite generation of F - Surfaces associated with discontinuous groups - The surfaces D modulo G and K(F) modulo F - Area and type numbers - Decompositions of groups - Composition of groups - Decomposition of groups - Decompositions of F-groups containing reflections - Elementary groups and elementary surfaces - Complete decomposition and normal form in the case of quasi-compactness - Exhaustion in the case of non-quasi-compactness - Isomorphism and homeomorphism - Topological and geometrical isomorphism - Topological and geometrical homeomorphism - Construction of g-mappings. Metric parameters. Congruent groups - Symbols and definitions - Bibliography

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga