Information Theory and Statistical Learning
-12 %

Information Theory and Statistical Learning

Sofort lieferbar | Lieferzeit: Sofort lieferbar I

Unser bisheriger Preis:ORGPRICE: 139,09 €

Jetzt 122,72 €*

Alle Preise inkl. MwSt.|Versandkostenfrei
ISBN-13:
9780387848150
Erscheinungsdatum:
14.11.2008
Seiten:
389
Autor:
Frank Emmert-Streib
Gewicht:
796 g
Format:
243x166x31 mm
Sprache:
Englisch
Beschreibung:

"Information Theory and Statistical Learning" presents theoretical and practical results about information theoretic methods used in the context of statistical learning.
Combines information theory and statistical learning components in one volume
Algorithmic Probability: Theory and Applications.- Model Selection and Testing by the MDL Principle.- Normalized Information Distance.- The Application of Data Compression-Based Distances to Biological Sequences.- MIC: Mutual Information Based Hierarchical Clustering.- A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information.- Information Approach to Blind Source Separation and Deconvolution.- Causality in Time Series: Its Detection and Quantification by Means of Information Theory.- Information Theoretic Learning and Kernel Methods.- Information-Theoretic Causal Power.- Information Flows in Complex Networks.- Models of Information Processing in the Sensorimotor Loop.- Information Divergence Geometry and the Application to Statistical Machine Learning.- Model Selection and Information Criterion.- Extreme Physical Information as a Principle of Universal Stability.- Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga