Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Handbook of Mathematical Models in Computer Vision

Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9780387288314
Veröffentl:
2006
Seiten:
606
Autor:
Nikos Paragios
eBook Typ:
PDF
eBook Format:
EPUB
Kopierschutz:
1 - PDF Watermark
Sprache:
Englisch
Beschreibung:

Visual perception refers to the ability of understanding the visual information that is provided by the environment. Such a mechanism integrates several human abilities and was studied by many researchers with different scientific origins including philosophy, physiology, biology, neurobiology, mathematics and engineering. In particular in the recent years an effort to understand, formalize and finally reproduce mechanical visual perception systems able to see and understand the environment using computational theories was made by mathematicians, statisticians and engineers. Such a task connects visual tasks with optimization processes and the answer to the visual perception task corresponds to the lowest potential of a task-driven objective function. In this edited volume we present the most prominent mathematical models that are considered in computational vision. To this end, tasks of increasing complexity are considered and we present the state-of-the-art methods to cope with such tasks. The volume consists of six thematic areas that provide answers to the most dominant questions of computational vision:
"This comprehensive volume is an essential reference tool for professional and academic researchers in the filed of computer vision, image processing, and applied mathematics. Continuing rapid advances in image processing have been enhanced by the theoretical efforts of mathematicians and engineers. This marriage of mathematics and computer vision - computational vision - has resulted in a discrete approach to image processing that is more reliable when leveraging in practical tasks. This comprehensive volume provides a detailed discourse on the mathematical models used in computational vision from leading educators and active research experts in this field. Topical areas include: image reconstruction, segmentation and object extraction, shape modeling and registration, motion analysis and tracking, and 3D from images, geometry and reconstruction. The book also includes a study of applications in medical image analysis.
Image Reconstruction.- Diffusion Filters and Wavelets: What Can They Learn from Each Other?.- Total Variation Image Restoration: Overview and Recent Developments.- PDE-Based Image and Surface Inpainting.- Boundary Exraction, Segmentation and Grouping.- Levelings: Theory and Practice.- Graph Cuts in Vision and Graphics: Theories and Applications.- Minimal Paths and Fast Marching Methods for Image Analysis.- Integrating Shape and Texture in DeformabIe Models: from Hybrid Methods to Metamorphs.- Variational Segmentation with Shape Priors.- Curve Propagation, Level Set Methods and Grouping.- On a Stochastic Model of Geometric Snakes.- Shape Modeling & Registration.- Invariant Processing and Occlusion Resistant Recognition of Planar Shapes.- Planar Shape Analysis and Its Applications in Image-Based Inferences.- Diffeomorphic Point Matching.- Uncertainty-Driven, Point-Based Image Registration.- Motion Analysis, Optical Flow & Tracking.- Optical Flow Estimation.- From Bayes to PDEs in Image Warping.- Image Alignment and Stitching.- Visual Tracking: A Short Research Roadmap.- Shape Gradient for Image and Video Segmentation.- Model-Based Human Motion Capture.- Modeling Dynamic Scenes: An Overview of Dynamic Textures.- 3D from Images, Projective Geometry & Stereo Reconstruction.- Differential Geometry from the Frenet Point of View: Boundary Detection, Stereo, Texture and Color.- Shape From Shading.- 3D from Image Sequences: Calibration, Motion and Shape Recovery.- Multi-view Reconstruction of Static and Dynamic Scenes.- Graph Cut Algorithms for Binocular Stereo with Occlusions.- Modelling Non-Rigid Dynamic Scenes from Multi-View Image Sequences.- Applications: Medical Image Analysis.- Interactive Graph-Based Segmentation Methods in Cardiovascular Imaging.- 3D Active Shape and Appearance Models in Cardiac Image Analysis.- Characterization of Diffusion Anisotropy in DWI.- Segmentation of Diffusion Tensor Images.- Variational Approaches to the Estimation, Regularizatinn and Segmentation of Diffusion Tensor Images.- An Introduction to Statistical Methods of Medical Image Registration.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga