Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

The Physics of Coronary Blood Flow

Sofort lieferbar | Lieferzeit:3-5 Tage I
M. Zamir
Biological and Medical Physics, Biomedical Engineering
eBook Typ:
eBook Format:
1 - PDF Watermark

"This book is devoted to the dynamics and physics of coronary blood flow. While it recognizes the range of clinical and pathophysiological issues involved, the book focuses on dynamics and physics, approaching the subject from a biomedical engineering viewpoint. With this approach, the book will complement other books on the subject that have so far focused largely on clinical and pathophysiological issues.
The Lone Pump. -Heart 'Disease'? . -Origin of Coronary Blood Supply. -Coronary Arteries. -Left/Right Dominance. -Branching Structure. -Underlying Design?. -Coronary Flow Reserve.- Design Conflict?. -Summary. -Modelling Preliminaries. -Why Modelling?. -The 'Lumped Model' Concept. -Flow in a Tube. -Fluid Viscosity: Resistance to Flow. -Fluid Inertia: Inductance. -Elasticity of the Tube Wall: Capacitance. -Elasticity of the Tube Wall: Wave Propagation. -Mechanical Analogy. -Electrical Analogy. -Summary. -Basic Lumped Elements. -Introduction. -RLC System in Series. -Free Dynamics of the RLC System in Series. -R1,R2 in Parallel. -R,L in Parallel. -R,C in Parallel. -RLC System in Parallel Under Constant Pressure. -RLC System in Parallel Under Constant Flow. -Summary. -Forced Dynamics of the RLC System. -Introduction. -The Particular Solution. -Using the Complex Exponential Function. -Overdamped Forced Dynamics. -Underdamped Forced Dynamics. -Critically Damped Forced Dynamics. -Transient and Steady States. -The Concept of Reactance. -The Concepts of Impedance, Complex Impedance. -Summary. -The Analysis of Composite Waveforms. -Introduction. -Basic Theory. -Example: Single-Step Waveform. -Example: Piecewise Waveform. -Numerical Formulation. -Example: Cardiac Waveform. -Summary. -Composite Pressure-Flow Relations. -Introduction. -Composite Pressure-Flow Relations Under Pure Resistance. -Example: Cardiac Pressure Wave. -Composite Pressure-Flow Relations Under General Impedance. -Composite Pressure-Flow Relations Under Inertial Effects. -Composite Pressure-Flow Relations Under Capacitance Effects. -Composite Pressure-Flow Relations Under RLC in Series. -Composite Pressure-Flow Relations Under RLC in Parallel. -Summary. -Lumped Models. -Introduction. -LM0: {R,C}. -LM1: {R1,{R2+C}}. -LM2: {{R1+L},{R2+C}}. -LM3: {{R1+(pb)},{R2+C}}. -Inflow-Outflow. -Summary. -Elements of Unlumped-Model Analysis. -Introduction. -The Streamwise Space Dimension. -Steady Flow along Tube Segments. -Steady Flow Through a Bifurcation. -Pulsatile Flow in a Rigid Tube. -Pulsatile Flow in an Elastic Tube. -Wave Reflections. -Summary. -Basic Unlumped Models. -Introduction. -Steady Flow in Branching Tubes. -Pulsatile Flow in Rigid Branching Tubes. -Elastic Branching Tubes. -Effective Impedance, Admittance. -Pulsatile Flow in Elastic Branching Tubes. -Cardiac Pressure Wave in Elastic Branching Tubes. -Summary. -Dynamic Pathologies. -Introduction. -Magic Norms? -Coronary Heart Disease, Physical Exercise, and the Conundrum of Coronary Flow Reserve. -Wave Propagation Through a Coronary Bypass. -Wave Propagation Through a Coronary Stent. -Sudden Cardiac Death. -Broken Heart Syndrome. -Summary. -References. -Index.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga