Femtosecond Optical Frequency Comb: Principle, Operation and Applications

 HC runder Rücken kaschiert
Print on Demand | Lieferzeit: Lieferbar innerhalb von 3-5 Werktagen I

180,64 €*

Alle Preise inkl. MwSt.|Versandkostenfrei
HC runder Rücken kaschiert
Steven T. Cundiff
729 g
241x160x25 mm

Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as ¿femtosecond comb technology. ¿ They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch¿s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.
This introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric amplification, optical frequency metrology, optical atomic clocks, ultra-sensitive sensors, carrier-envelope phase dynamics, high field ionization of atoms and generation of atto-second high-harmonic radiation. To provide readers with the most recent, direct, and comprehensive information, the chapters are written by the international researchers who have led the development of this field. This book provides an introduction to those new to the field and is at the same time a resource for experts
Femtosecond Laser Development.- Gigahertz Femtosecond Lasers.- Microstructure Fiber and White-light Generation.- Optical Comb Dynamics and Stabilization.- Femtosecond Noncollinear Parametric Amplification and Carrier-Envelope Phase Control.- Optical Frequency Measurement.- Optical Frequency Measurement Using Frequency Multiplication and Frequency Combs.- Femtosecond Lasers for Optical Clocks and Low Noise Frequency Synthesis.- Generation and Measurement of Intense Phase-Controlled Few-Cycle Laser Pulses.- Quantum Control of High-Order Harmonic Generation.- Applications of Ultrafast Lasers.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

Google Plus
Powered by Inooga